p53 promotes cardiac dysfunction in diabetic mellitus caused by excessive mitochondrial respiration-mediated reactive oxygen species generation and lipid accumulation.

نویسندگان

  • Hideo Nakamura
  • Satoaki Matoba
  • Eri Iwai-Kanai
  • Masaki Kimata
  • Atsushi Hoshino
  • Mikihiko Nakaoka
  • Maki Katamura
  • Yoshifumi Okawa
  • Makoto Ariyoshi
  • Yuichiro Mita
  • Koji Ikeda
  • Mitsuhiko Okigaki
  • Souichi Adachi
  • Hideo Tanaka
  • Tetsuro Takamatsu
  • Hiroaki Matsubara
چکیده

BACKGROUND Diabetic cardiomyopathy is characterized by energetic dysregulation caused by glucotoxicity, lipotoxicity, and mitochondrial alterations. p53 and its downstream mitochondrial assembly protein, synthesis of cytochrome c oxidase 2 (SCO2), are important regulators of mitochondrial respiration, whereas the involvement in diabetic cardiomyopathy remains to be determined. METHODS AND RESULTS The role of p53 and SCO2 in energy metabolism was examined in both type I (streptozotocin [STZ] administration) and type II diabetic (db/db) mice. Cardiac expressions of p53 and SCO2 in 4-week STZ diabetic mice were upregulated (185% and 152% versus controls, respectively, P<0.01), with a marked decrease in cardiac performance. Mitochondrial oxygen consumption was increased (136% versus control, P<0.01) in parallel with augmentation of mitochondrial cytochrome c oxidase (complex IV) activity. Reactive oxygen species (ROS)-damaged myocytes and lipid accumulation were increased in association with membrane-localization of fatty acid translocase protein FAT/CD36. Antioxidant tempol reduced the increased expressions of p53 and SCO2 in STZ-diabetic hearts and normalized alterations in mitochondrial oxygen consumption, lipid accumulation, and cardiac dysfunction. Similar results were observed in db/db mice, whereas in p53-deficient or SCO2-deficient diabetic mice, the cardiac and metabolic abnormalities were prevented. Overexpression of SCO2 in cardiac myocytes increased mitochondrial ROS and fatty acid accumulation, whereas knockdown of SCO2 ameliorated them. CONCLUSIONS Myocardial p53/SCO2 signal is activated by diabetes-mediated ROS generation to increase mitochondrial oxygen consumption, resulting in excessive generation of mitochondria-derived ROS and lipid accumulation in association with cardiac dysfunction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53

Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...

متن کامل

Aldose reductase-mediated phosphorylation of p53 leads to mitochondrial dysfunction and damage in diabetic platelets.

BACKGROUND Platelet abnormalities are well-recognized complications of diabetes mellitus. Mitochondria play a central role in platelet metabolism and activation. Mitochondrial dysfunction is evident in diabetes mellitus. The molecular pathway for hyperglycemia-induced mitochondrial dysfunction in platelets in diabetes mellitus is unknown. METHODS AND RESULTS Using both human and humanized mou...

متن کامل

Curcumin protects rat liver from streptozotocin-induced diabetic pathophysiology by counteracting reactive oxygen species and inhibiting the activation of p53 and MAPKs mediated stress response pathways

Curcumin (CUR) is a highly pleiotropic molecule and possesses anti-inflammatory, hypoglycemic, antioxidative, wound-healing and antimicrobial activities. The present study was carried out to investigate whether CUR plays any beneficial role in streptozotocin (STZ) induced hepatic pathophysiology in diabetic rats. STZ exposure increased hepatic damage associated serum markers (ALT, ALP and LDH) ...

متن کامل

Mitochondrial Reactive Oxygen Species in Lipotoxic Hearts Induce Post-Translational Modifications of AKAP121, DRP1, and OPA1 That Promote Mitochondrial Fission.

RATIONALE Cardiac lipotoxicity, characterized by increased uptake, oxidation, and accumulation of lipid intermediates, contributes to cardiac dysfunction in obesity and diabetes mellitus. However, mechanisms linking lipid overload and mitochondrial dysfunction are incompletely understood. OBJECTIVE To elucidate the mechanisms for mitochondrial adaptations to lipid overload in postnatal hearts...

متن کامل

FFA-ROS-P53-mediated mitochondrial apoptosis contributes to reduction of osteoblastogenesis and bone mass in type 2 diabetes mellitus

This study evaluated the association between free fatty acid (FFA), ROS generation, mitochondrial dysfunction and bone mineral density (BMD) in type 2 diabetic patients and investigated the molecular mechanism. db/db and high fat (HF)-fed mice were treated by Etomoxir, an inhibitor of CPT1, MitoQ, and PFT-α, an inhibitor of P53. Bone metabolic factors were assessed and BMSCs were isolated and i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation. Heart failure

دوره 5 1  شماره 

صفحات  -

تاریخ انتشار 2012